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Abstract—In the near future, the Internet of Things will
cheaply connect smart devices, in such a way to form large
Wireless Sensor and Actuator Networks (WSANs). For its
characteristics, the Routing Protocol for Low-Power and Lossy
Networks (RPL) is considered the standard choice for WSANs.
Since they often carry sensitive or safety-critical data, securing
these networks from cyberattacks is paramount. One of the
subtlest security attacks in RPL WSANs is the wormhole attack, in
which a malicious actor establishes and controls an out-of-band
channel between two distant nodes of the network. Due to its
convenience, RPL is induced to use such a channel to forward the
traffic. As a result, the malicious actor can control a potentially
large amount of traffic and can eavesdrop or discard it. The
wormhole attack cannot be avoided by traditional cryptographic
countermeasures, for example by encrypting and authenticating
all the traffic. Nevertheless its importance, the wormhole attack
has been studied exclusively by theory. The practical techniques
to realize it on a WSAN have not been studied until now.

The contribution of this paper is two-fold. First, we present
an implementation of a wormhole capable of attacking an IEEE
802.15.4-based WSAN, using also a technique to increase its
impact (proxy acker technique). We test the realized wormhole
against a real WSAN, measuring its impact with respect to
various parameters. As a second contribution, we discuss the
various countermeasures proposed by the literature, and we test
the feasibility of one of them in practice. We conclude that the
most convenient way to counteract a wormhole attack in a WSAN
may be to avoid subsequent attacks, i.e., traffic eavesdropping
and selective packet dropping.

I. INTRODUCTION

Recent advancements in computing and communication
technologies are currently paving the road to make real the
Internet of Things (IoT), a vision in which smart objects, i.e.,
common objects empowered with communication capabilities,
are seamlessly integrated into information systems [1]. IoT
is expected to trigger significant changes into many areas of
our lives: health (e.g., remote patient monitoring), home (e.g.,
smart lighting and heating), and city (e.g., smart traffic and
parking applications). In this context, Wireless Sensor and
Actuator Networks (WSANs) will represent a key building
block as they will guarantee rapid installation of smart objects
to cover large areas, so keeping the deployment costs low. Data
delivery through wireless links in a multi-hop fashion reduces
the need for complex network infrastructure and guarantees
the flexibility required for expansion and evolution.

In order to ease the integration of WSANs into existing
information systems, IETF has standardized a set of protocols

for IoT WSANs. The communication protocol stack is built
on top of the IEEE 802.15.4, widely exploited in WSANs
deployments [2], and adopts IPv6 as communication protocol.
To this aim, the group has defined 6LoWPAN, an adaptation
layer to allow the transmission of IPv6 packets on IEEE
802.15.4 networks, and the IPv6 Routing Protocol for Low-
Power and Lossy Networks, RPL [3], considered the standard
routing solution for IoT [4].

Although both the IEEE 802.15.4 and the RPL standards
include a set of mechanisms to ensure the security of com-
munication and the resiliency of network control operations
against malicious actions [5], [6], the shared and open nature
of the wireless medium makes WSANs intrinsically vulnerable
to a wide range of security attacks [7]. Among them, the
wormhole attack [8] is one of the subtlest, because it is hard
to detect and to avoid. In a wormhole attack, a malicious actor
establishes and controls an out-of-band channel between two
distant nodes. Due to the convenience of this channel, the
routing service is induced to use it to forward the traffic. As a
result, the malicious actor controls a potentially large amount
of traffic and can eavesdrop or discard it. The wormhole
attack is feasible also if the routing messages are encrypted
and authenticated, without the need of stealing any crypto-
graphic secret from the nodes. Nevertheless its importance,
the wormhole attack has been studied exclusively by theory.
The practical techniques to realize it on a WSAN have not
been studied until now.

The contribution of this paper is as follows.

• We present an implementation of a wormhole capable
of attacking an IEEE 802.15.4 WSAN, using also a
technique to increase the impact on RPL routing protocol
(proxy acker technique). As a proof of concept, we attack
a real WSAN with our wormhole, and we measure the
attack impact with respect to various parameters.

• We discuss the various countermeasures proposed by the
literature, and we test one of them with real experiments.
We conclude that avoiding or detecting a wormhole attack
may be too expensive for the typical IoT WSAN, which
is resource-constrained. A most convenient way may
be to avoid or detect subsequent attacks, namely traffic
eavesdropping and selective packet dropping.

The rest of the paper is organized as follows. In Section



II we review related work about RPL attacks and impact
assessment of wormholes. In Section III we give the tech-
nical background about IEEE 802.15.4 and RPL protocols. In
Section IV we give a detailed description of our wormhole
implementation and the proxy acker technique. In Section V
we attack a real WSAN with our wormhole, and we measure
the attack impact with respect to various parameters. In Section
VI we discuss the various countermeasures proposed by the
literature, we test one of them with real experiments, and
we conclude that the most convenient way to counteract a
wormhole could be to avoid or detect subsequent attacks. In
Section VII we draw the conclusions.

II. RELATED WORK

Since its proposal by the IETF ROLL group, the research
community analyzed the security of RPL and assessed the
impact of various attacks [9], [10]. Dvir et al. [11] studied
the effects of the sinkhole attack, in which a malicious node
advertises a falsely convenient path to the root, in order to
attract traffic from surrounding nodes. The malicious node can
then eavesdrop and/or discard the attracted traffic. Mayzaud
et al. [12] studied the impact of the DODAG Version attack,
which has a similar effect. The majority of research papers
focused on sinkhole and DODAG Version attacks [11], [13],
[14], [15], and proposed various countermeasures. Though
very disruptive, these attacks are easy to avoid (at least with
non-internal adversaries) by means of cryptographic authenti-
cation of the RPL messages. Perazzo et al. [16] analyzed the
effects of the DIO suppression attack, by which a malicious
node can partition a RPL network also if some cryptographic
authentication is active. However, also this attack can be
avoided by an effective replay protection mechanism, based
again on cryptography. Standard-compliant implementations
of such authentication and replay protection mechanisms are
already available for IEEE 802.15.4 [5] and RPL [6]. On the
contrary, the wormhole attack is not avoidable by means of
mere cryptography at all and constitutes thus a subtler threat.

The wormhole attack has been introduced by Hu et al.
[8], who made also a first qualitative impact assessment. The
particular severity of the attack has attracted considerable re-
search, some of which [17], [18], [19], [20] have quantitatively
assessed the impact of a wormhole attack against simulated
ad-hoc networks. The most important study on wormhole
impact is perhaps Khabbazian et al. [20], which developed
a complete theoretical framework to estimate the impact of
a wormhole against a generic network that uses a hop-count
routing metric. Khabbazian et al. and the other papers in the
literature studied the wormhole attack exclusively by theoretic
analysis or simulation. The practical techniques to perform
it on a real WSAN have not been studied until now. In this
paper, we present an implementation of a wormhole capable
of attacking an IEEE 802.15.4 WSAN. As a proof of concept,
we attack a real WSAN with our wormhole, and we measure
the impact with respect to various parameters.

DODAG root

DODAG

Fig. 1. Example of DODAG. Solid arrows point to preferred parents, dashed
arrows point to other parents in the parent set.

III. TECHNICAL BACKGROUND

A. IEEE 802.15.4 MAC Protocol

The IEEE 802.15.4 standard [21] is a wireless communica-
tion standard for low-power, low-rate and low-cost WSANs.
The standard supports different network topologies and differ-
ent channel access modes. In this paper we focus on networks
with mesh topologies in which multi-hop communication is
achieved by means of a routing protocol left unspecified by
the standard. As far as the channel access mode is concerned,
we consider the nonbeacon-enabled mode that is the one
most widely adopted by practical deployments. With this
mode, nodes communicate in a distributed manner using the
CSMA/CA (Carrier Sense Multiple Access with Collision
Avoidance) algorithm. The transmission of both broadcast
and unicast frames is supported. In order to ensure proper
delivery, unicast transmissions are acknowledged by the re-
ceiver through acknowledgment frames (ACKs) that are sent
in response.

B. RPL Routing Protocol

RPL [3], [4] is a distance-vector routing protocol specifi-
cally designed for constrained devices. Its design assumes that
the majority of the application traffic is upward, i.e., generated
by nodes and directed towards a single node acting as a border
router. For this reason, RPL builds and maintains a logical
topology for upstream data delivery, while downward routes
are established only when required. The logical topology built
by RPL is a Destination Oriented Directed Acyclic Graph
(DODAG), an example of which is shown in Fig. 1. In a
DODAG, every node selects a set of neighbors, called parent
set, as candidates for upstream data delivery. One of the nodes
within the parent set is selected as the preferred parent, which
is exploited for the actual data forwarding. The DODAG
is rooted in a single node, the DODAG root, to which all
upstream data is directed. The DODAG root acts also as a
border router for other networks. The DODAG root triggers
the RPL topology formation by emitting DODAG Information
Object (DIO) messages. Non-root nodes listen for DIOs and
use the included information to join the DODAG. Upon joining
the DODAG, a node also starts emitting DIOs to advertise its
presence and its distance to the root. The emission of DIOs is
regulated by the Trickle algorithm [22]. Trickle was originally
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Fig. 2. Wormhole implementation schema.

designed for polite gossiping in wireless networks, to reduce
the power consumption of the nodes by minimizing the redun-
dant messages and by dynamically adapting the transmission
rate. The Trickle algorithm divides time in periods of variable
length. The node schedules the transmission of a DIO message
at a random time t in the second half of each period. Until
t, the node listens for messages and keeps track of the DIOs.
At time t, the scheduled DIO message is broadcast unless a
certain number of DIOs have been already received, above
a given suppression threshold. At the end of the period, the
length of the next period is doubled, until a maximum length
Imax is reached (max Trickle period). At any time, if a DIO
that advertises updated information is received, the Trickle
algorithm is reset, meaning that the current Trickle period is
interrupted and the algorithm starts over from a period of a
minimum length Imin (min Trickle period). The asynchronous
emission of DIOs can be requested by broadcasting DODAG
Information Solicitation (DIS) messages, which cause the
Trickle algorithm to reset on the receiving nodes.

Each DIO message specifies the rank of the sender, which
is a scalar measure of its distance to the root node. According
to RPL specifications, in order to avoid loops in the logical
topology, the rank must monotonically increase along each
path as the distance to the root increases. The rank is calculated
by each node according to an Objective Function (OF). Each
OF defines the policy for the selection of the preferred parent
based on the rank of neighbors. Different OFs have been
proposed, among them the Minimum Rank with Hysteresis
Objective Function (MRHOF) [23] is often adopted as it aims
at improving the stability of the routing protocol by reducing
route flaps caused by small metric fluctuations. To this end,
MRHOF adopts a hysteresis mechanism: a new preferred
parent is selected only if it has rank that is more convenient
than the current preferred parent by a parent switch threshold
(∆rank).

Although the OF can take into account a wide range
of communication costs for rank computation, the Expected
Transmission Count (ETX) is widely adopted. ETX is defined
as the inverse of the product of the Packet Reception Rate
(PRR) computed using received packets and the PRR com-
puted using received ACKs [24].

IV. WORMHOLE IMPLEMENTATION

In this section we present our wormhole implementation.
Such an implementation has been made publicly available on

Github1. In a nutshell, our wormhole acts by replaying the traf-
fic sniffed from one portion of the network to another portion
and vice versa. It operates at the MAC layer, meaning that it
never interprets higher-layer information carried in the payload
of the MAC frames. This makes the attack possible even if
the whole traffic is secured through MAC-layer encryption
and authentication. Indeed, MAC-layer encryption encrypts the
MAC payload, which the wormhole never interprets, whereas
the MAC-layer authentication protects the integrity of the
MAC header and the MAC payload, which the wormhole never
modifies.

The realized schema is pictured in Fig 2. The wormhole is
realized through two endpoints deployed in different areas of
the victim network. Each endpoint is composed of an IEEE
802.15.4 sensor board connected via serial link to a laptop on
which a python service runs. The two laptops communicate
using a local network, e.g., an Ethernet or WiFi connection,
or an Internet connection, if the victim network is large. It
is worth to note that, in a real attack scenario in a human-
monitored environment, it may be convenient for the adversary
to replace laptops with smaller devices, which are easier to
hide. Any device with a serial connection (e.g., an USB port),
an Internet connection, and the capability of running python
scripts is suitable. For example a cheap Raspberry Pi board.

For the IEEE 802.15.4 sensor boards we adopted two
CC2650 Launchpad boards by Texas Instruments2. It is a
low-cost evaluation board designed for fast prototyping that
is equipped with an IEEE 802.15.4 transceiver. The board
runs the Contiki operating system3, a popular operating system
for sensor devices. Each endpoint implements two different
functions: the sniffer and the replayer. Each function is im-
plemented with two processes: one Contiki process running on
the board and another python process running on the laptop.

The Contiki sniffer process continuously captures all the
traffic transmitted in the network by programming the wireless
transceiver in promiscuous mode at bootstrap. Every time a
frame is eavesdropped, the process forwards it to the python
sniffer process running on the laptop through the serial link
between the board and the laptop. The python sniffer process
is programmed to forward the frame to the other endpoint,
specifically to the replayer python process running on the
other laptop, using a TCP socket. The python replayer pro-
cess, instead, is responsible to receive the frames from the
other endpoint and to retransmit them. The retransmission is
performed by forwarding the frame to the board. The Contiki
replayer process is programmed to retransmit every frame that
is received using the IEEE 802.15.4 interface.

A. Proxy Acker Technique

The sniffer and replayer functions allow frames to be
transmitted from one endpoint to the other and vice versa.
An unicast transmission that takes place between two nodes
on two different sides of the wormhole, however, requires

1Wormhole implementation: https://github.com/darvarr/wormhole
2http://www.ti.com/tool/launchxl-cc2650
3http://contiki-os.org/



proper delivery of ACKs. Even though they can be transmitted
through the wormhole as regular frames, the wormhole intro-
duces an additional latency that might cause the transmitter
to ignore the acknowledgment. Based on the IEEE 802.15.4
specifications an ACK must be received before a certain time-
out, whose value might be shorter than the latency introduced
by the wormhole, since the two endpoints could communicate
even through an Internet connection. In this case, the ACK
may be ignored by the transmitter, which could consequently
increase its ETX estimate, so that the wormhole link would
appear less convenient for routing.

In order to avoid this, each endpoint implements in the board
an additional process, the proxy acker, which is responsible for
generating ACKs for the unicast frames that are transmitted
from one endpoint to the other, to mimic the proper transmis-
sion of ACKs through a real (fast) wireless link. In this way,
the ACKs are received timely and the victim nodes do not
increase their ETX estimate. Also, the proxy acker technique
increases the probability that a victim node receives ACKs
without errors. This is because ACKs are transmitted directly
by the wormhole endpoint and do not have to be received
by the other endpoint and pass through the wormhole, which
is a lossier procedure. This additionally decreases the ETX
estimate that the victim node makes of the wormhole link,
thus increasing its apparent convenience for routing.

The proxy acker is programmed to generate an ACK for
each unicast frame that has as destination a node located on
the other side of the wormhole. The MAC addresses of such
nodes are stored on a MAC table populated through backward
learning. Every time a frame is received and replayed by
the Contiki replayer process, the latter adds the source MAC
address of the frame in the MAC table, if not already available.
In order to avoid message storms, the MAC table is also
exploited by the sniffer process to filter the unicast messages
to be forwarded on the other side.

In Fig. 3 we illustrate the flow diagram of our wormhole
implementation with the proxy acker technique, as it typically
works on a RPL network. The diagram assumes that one
endpoint (Endpoint A) is located closer to the RPL root node,
while the other (Endpoint B) is farther. At first, the MAC tables
of both the endpoints are empty, therefore, the first message
transmitted through the wormhole is a broadcast message, i.e.,
a DIO message. Let us assume that the first DIO message
transmitted through the wormhole is from Endpoint A to
Endpoint B (a DIO message transmitted from Endpoint B to
Endpoint A would be likely ignored as it conveys a higher
rank making no changes in the network behavior). The DIO
message is sniffed by the board of Endpoint A (1), then it is
forwarded to the python sniffer process via serial (2). Since
the message is broadcast, the process forwards the message
to the python replayer process on Endpoint B through the
TCP socket (3), which adds the source MAC address to the
MAC table and then sends the message to the Contiki replayer
process on the board via serial connection (4). The message
that is broadcast is received by the nodes in reception range of
Endpoint B, which likely select the sender of the DIO message

DIO message (1)

DIO message (2)
DIO message (3)

DIO message (4)

DIO message (5)

unicast message (6)

ACK (7)

unicast message (8)

unicast message (9)
unicast message (10)

unicast message(11)

root node non-root
node

Endpoint A Endpoint B

Fig. 3. Typical attack information flow with proxy acker technique.

as new preferred parent, considering that it has a lower rank.
When a unicast message is forwarded to the preferred parent
by one of those nodes, the message is received by the Contiki
sniffer process of Endpoint B (5). Since the MAC address is
known, the message is forwarded to the python sniffer process
(6), while the proxy acker generates an ACK (7). The frame is
eventually transmitted in proximity of Endpoint A, following
the same reverse path (8-11).

Note that the proxy acker technique is applicable also if
all network traffic is authenticated at the MAC layer. This
is because the IEEE 802.15.4 standard does not allow to
authenticate ACKs. Thus an adversary is always able to
transmit forged ACKs without being detected [25].

V. EXPERIMENTS

A. Victim Testbed and Wormhole Placement

Our victim testbed is a network of 22 6LoWPAN wireless
sensor nodes deployed at our department in University of Pisa
(Fig. 4) [26]. Each sensor is a TMoteSky4. The sensors run
the Contiki OS which executes the RPL routing protocol. Each
sensor sends an UDP packet to the root once a minute. All the
traffic generated by the testbed is encrypted and authenticated
at the MAC layer, by means of an AES-128 key preinstalled
in each node. This is to prove the feasibility of the attack and
of the proxy acker technique even in this case.

B. Best Wormhole Placement

In order to study the maximum impact of a wormhole
in a wireless network, Khabbazian et al. [20] suggest to
place the wormhole endpoints at the intersection points of the
transmission ranges of the nodes. Unfortunately, in our testbed
the transmission ranges are not easily measurable, and they
may also change over time due to environment variability. In
this case, the same authors [20] suggest to place the wormhole
endpoints in the close proximity of the victim nodes. In this
way, what we get is a lower bound of the real maximal impact
of a wormhole. We chose to proceed in this latter way. We
performed some preliminary experiments to identify the best
wormhole placement. Fig. 5 shows a typical example of RPL

4https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
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Fig. 5. Example of RPL topology built by our victim testbed after 1 hour of
operation. The dashed line reports the best wormhole placement in terms of
number of affected nodes. In red color the affected nodes.

topology that the nodes build after 1 hour of network activity.

From this topology, we can see that the best wormhole
configuration is to place one endpoint close to Node 1 (the
root) and another endpoint close to Node 14. Indeed, Node
14 is selected by multiple legitimate upward routes: the routes
from Nodes 6, 12, 16, 18, and 14. It is worth to notice that,
instead of Node 14, which is two-hop distant from the root,
one of the nodes one-hop distant from the root (e.g., Node
21) could have been selected to capture more routes. Such
a configuration, however, would have been ineffective: since
the legitimate nodes are in direct communication, the adver-
sary would not have controlled any route. Our preliminary
experiments confirmed that in most of the cases the best
placement of the wormhole endpoints is close to Nodes 1
and 14, hence this configuration has been adopted in all the
following experiments as shown in Fig. 5.

C. Experiments Set Up

We performed experiments which are divided in four
phases: (i) a warm-up phase (2 hours) in which the wormhole
is off and the victim testbed stabilizes and converges towards
legitimate routes; (ii) an attack phase (1 hour) in which the
wormhole operates; and a (iii) post-attack phase (1 hour)
in which the wormhole is turned off again and the victim
testbed recovers from the attack. To make measurable the
effect of the wormhole, we drop every unicast frame flowing

from Endpoint B to Endpoint A, thus realizing a denial-of-
service attack. Unicast frames are easily identifiable by the
wormhole, since MAC header is not encrypted. The effect of
this wormhole is that the DIOs sent by the root are replayed
towards the far away nodes, so that these nodes are likely
to choose the root as their preferred parent. When the nodes
try to send UDP data packets to the root, these packets get
lost, because the wormhole drops them. The victim nodes
does not detect such data loss, because Endpoint B sends
ACKs to them and illudes them that the lost packets have been
correctly received. This attack could be mounted, for example,
against a cryptographically protected wireless sensor network
for environment monitoring and event reporting, to obtain a
denial of service without stealing secret keys or performing
energy-expensive and easy-to-detect jamming attacks.

D. Impact of the Attack

We measure the impact of our wormhole attack with the
following metrics.

• Wormholed nodes, defined as the number of nodes whose
path to the root passes through the wormhole.

• Global packet loss, defined as the percentage of undeliv-
ered UDP data packets directed towards the root within
a given interval time. The packet loss can be caused by
both regular network events (e.g., wireless transmission
errors), or by the wormhole.

• Local packet loss, defined in the same way as global
packet loss but measured only on the nodes geograph-
ically close to Endpoint B, namely Nodes 3, 7, 8, 12,
14, 16, 19. Such nodes are labelled as “local nodes” and
circled in red in Fig. 4.

For each combination of parameters, 10 independent exper-
iment replicas have been run to obtain more statistically sound
results.

Fig. 6 shows the average wormholed nodes over time, with
a max Trickle period set to 17min 29sec (= 220 milliseconds)
and ∆rank = 1.0, which represent the default Contiki settings.
It can be seen that the wormhole affects the upward routes of
4-5 nodes in average at its maximum effect. Note that the
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attack does not have an immediate effect, but it needs some
time. This is because after the warm-up phase, the root sends a
DIO message each max Trickle period, which is non-negligible
(17min 29sec). In order to speed up the attack effect, the
adversary should cause a reset of the Trickle period of the
root node, for example by sending a malicious DIS message.
This is possible only if she can forge a malicious DIS message
or replay a DIS message sent before by a legitimate node. This
is not the case of our experiments, in which all the legitimate
traffic is authenticated at the MAC layer. On the other hand,
the recovery of the network after the attack is quick. This is
because RPL nodes notice that they do not receive anymore
ACKs from the preferred parent, and they quickly react by
selecting a failover parent.

Fig. 7 shows the average global and local packet loss
with time. As expected, when the wormhole is disabled,
the network experiences the packet loss caused by normal
network events, such as packet transmission errors. When the
wormhole is activated, instead, the global and local packet
losses increase noticeably, roughly following the trend of the
number of wormholed nodes reported in Fig. 6. As can be
seen considering the local packet loss rate, the increase in the
global packet loss is due to the increase of the packet loss
experienced by the nodes in proximity of the Endpoint B,
which report an average packet loss of approximately 80%.
Although such results are omitted here for the sake of brevity,
if we look at the single values of the packet loss experienced
by such nodes, we can see that the majority of the nodes report
a packet loss of 100% during the attack, while a minority a
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value of approximately 10%. This confirms that not all the
nodes in proximity of Endpoint B are affected and continue
to send their packets towards the legitimate path.

Figs. 8 and 9 show the average packet loss over the whole
attack time (1h) with respect to the max Trickle period, and
with respect to the parent switch threshold of MRHOF. These
two system parameters are considered to evaluate a possible
countermeasure consisting in modifying the behavior of RPL
in order to make the network more “static”. Specifically, by
increasing the max Trickle timer or the parent switch threshold
each node might be less prone to select a new convenient
(possibly wormholed) preferred parent. The results, however,
do not show clear trends, since the various confidence intervals
overlap. This suggests us that a simple configuration-based
defence is not feasible in this case.

VI. COUNTERMEASURES ANALYSIS FOR IOT WSANS

Researchers have proposed many countermeasures against
the wormhole attack, none of which seems definitive. In this
section, we study the applicability of such countermeasures
in IoT WSANs. We show that none of these countermeasures
seems to be practical, because they are generally too expensive
or energy-consumptive for constrained IoT devices. We then
argue that the best way to avoid wormhole attacks in IoT
WSANs is probably to avoid or detect subsequent attacks, in



such a way to nullify the incentive for mounting a wormhole.
We discuss how to do this in IEEE 802.15.4 networks.

The wormhole countermeasures in the literature can be
roughly divided in those based on specialized hardware [17],
[27], network monitoring [18], [28], [29], [30], reciprocity
of the wireless medium [31], [32], secure knowledge of the
nodes’ positions [27], [33], and timeouts between authenti-
cated frames [34]. The countermeasures based on specialized
hardware require for example directional antennas (in [17]) or
on-chip atomic clocks (in temporal leashes proposed by [27]).
Equipping cheap IoT devices with such advanced hardware
resources may be unpractical or too expensive. The coun-
termeasures based on network monitoring are more feasible,
but they may have a significant cost in terms of resource
consumption and traffic overhead. For example, the solutions
in [28] and in [29] require nodes to continuously overhear all
the neighbors’ transmissions. This impedes the nodes to follow
effective radio duty-cycle policies, which are often required to
obtain acceptable battery lifetimes. Other network monitoring
solutions like those in [18] and [30] require nodes to execute
probing tests, compute routing statistics, and send periodic
reports to a central node. This may constitute a burdensome
activity for many resource-constrained nodes. On the other
hand, countermeasures based on secure knowledge of the
nodes’ positions (e.g., geographical leashes in [27]) are feasi-
ble and cheap for networks with fixed nodes, whose positions
can be statically configured. This is incidentally the case of
the victim testbed we used for our experiments. However,
applying such solutions in case of mobile nodes may require
other hardware, for example GPS receivers, which may be too
expensive or too energy-consumptive for many applications.
Also, GPS receivers are susceptible to GPS spoofing attacks
[35], so positions measured by GPS cannot be considered
secure in general. The countermeasures in [31], [32] are based
on the physical reciprocity of the wireless medium, that is the
property by which the physical characteristics of a wireless
channel (e.g., the signal attenuation) are roughly the same in
one direction and in the opposite one [31], [32]. Krentz et
al. [32] has shown that, in order to be really effective, these
solutions require nodes to perform expensive channel tests,
by sending and receiving multiple probing frames on separate
channels. This again may constitute a burdensome activity for
many constrained nodes.

Finally, the countermeasures based on timeouts between
authenticated frames appear to be cheap and feasible. Intu-
itively, these countermeasures aim at precisely measuring the
round-trip time between two authenticated frames, in order
to detect the additional delay introduced by a wormhole in
between the communicating nodes. These countermeasures are
partial, since they cannot defend against signal-level worm-
holes, which introduces very short delays. Even though in
theory they could be effective to defend against frame-level
wormholes, we experimentally show in the following that
such countermeasures can be hardly implemented in practice.
Typical IoT devices are generally resource-constrained devices
that usually introduce a significant delay in their operations.
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Fig. 10. Frame loss vs sender timeout.

For this reason, it is unfeasible to enforce a strict timeout
between the transmission of two authenticated frames lower
than the delay introduced by a wormhole.

In order to demonstrate this issue, we carried out several
experiments considering different IoT-oriented commercially
available platforms: Advanticsys TMoteSky5, Zolertia RE-
Mote6, and Texas Instruments Launchpad7. In each experiment
a pair of devices of the same platform is programmed as
follows using the low-level operating system Contiki OS: one
device is programmed to send an authenticated 802.15.4 data
frame every second and wait for the relative acknowledgment
until a timeout; the other is programmed to receive the data
frame and send back an authenticated acknowledgment frame.
The data frame is authenticated by means of AES-128 CBC-
MAC, which is realized via hardware by the 802.15.4-enabled
radio chips. Since in the IEEE 802.15.4 standard acknowledg-
ment frames cannot be authenticated [21], we employed the
enhanced acknowledgment frames (ENH-ACKs), introduced
by the IEEE 802.15.4e amendment [2].

Fig. 10 shows the frame loss, defined as the percentage
of acknowledged frames over a total of 100 sent frames,
with respect to the timeout adopted by the sender device. It
can be seen that, for all considered platforms, the minimum
timeout in order to obtain an acceptable frame loss (< 0.1)
is in the order of tens of milliseconds. This significant delay
is attributable mainly to the software mechanisms necessary
to receive and process the challenge frame and prepare and
transmit the ENH-ACK. Such a delay is larger than the one
that an efficient frame-based wormhole can introduce. With a
cheap COTS-based wormhole like the one we implemented,
the introduced delay is lower-bounded only by the frame trans-
mission time and the ENH-ACK transmission time between
the two endpoints, which are both in the order of hundreds
of microseconds, plus the delay introduced by the wormhole
link, which is hard to lower bound.

Using the radio chip to produce the authenticated ENH-
ACKs, instead of sending them by software, would help to
obtain stricter timeouts. Unfortunately, no current 802.15.4-
enabled chip is able to send in hardware an authenticated
ENH-ACK after a frame reception. We conclude that counter-

5https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
6https://github.com/Zolertia/Resources/wiki/RE-Mote
7http://www.ti.com/tool/launchxl-cc2650



measures based on strict timeouts are generally hard to apply
to IoT-oriented devices currently available in the market.

To summarize what emerges from the research of the past
years, there is not a cheap and energy-affordable method to
avoid wormhole attacks for typical IoT WSANs. However, it is
worth to note that a wormhole attack is not detrimental per se,
but it is only a way to control a lot of traffic in order to mount
other attacks. Typical subsequent attacks are packet eavesdrop-
ping and (selective) packet dropping. For these attacks, there
are cheap and energy-affordable countermeasures. A simple
encryption at the MAC layer avoids packet eavesdropping, and
using authenticated acknowledgments makes packet dropping
detectable by the victim network. IEEE 802.15.4 standard
allows for AES-128 CCM authenticated encryption, which
allows for both the above functionalities. AES-128 CCM is
also implemented in Contiki [5] and realized via hardware
by the 802.15.4-enabled radio chips. These countermeasures
avoid or detect subsequent attacks and promise to be cheaper
and more effective than employing complex countermeasures
against wormhole.

VII. CONCLUSIONS

In this paper we presented a wormhole implementation
to mount an attack against an IEEE 802.15.4 WSAN. The
implementation, composed of a Contiki program and a python
code, has been made available opensource on Github. The
implementation has been exploited to evaluate the impact of
an attack on a real RPL network. The experiments highlighted
that the attack can be effective to mount other attacks, e.g., a
denial of service. Eventually, we concluded analyzing the fea-
sibility of possible countermeasures proposed in literature. Our
analysis highlighted that the proposed methods are difficult to
implement in practice, and the most convenient way to avoid
a wormhole could be to avoid or detect subsequent attacks,
namely traffic eavesdropping and selective packet dropping.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] D. De Guglielmo, S. Brienza, and G. Anastasi, “IEEE 802.15.4e: A
survey,” Computer Communications, vol. 88, no. Supplement C, pp. 1
– 24, 2016.

[3] T. Winter, “RPL: IPv6 routing protocol for low-power and lossy net-
works,” Internet Requests for Comments, RFC 6550, 2012.
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“TRAIL: Topology authentication in RPL,” in EWSN’16, 2016, pp. 59–
64.

[16] P. Perazzo, C. Vallati, G. Anastasi, and G. Dini, “DIO suppression attack
against routing in the Internet of Things,” IEEE Communications Letters,
vol. PP, no. 99, pp. 1–1, 2017.

[17] L. Hu and D. Evans, “Using directional antennas to prevent wormhole
attacks.” in NDSS’04, 2004, pp. 241–245.

[18] N. Song, L. Qian, and X. Li, “Wormhole attacks detection in wireless
ad hoc networks: a statistical analysis approach,” in IPDPS’05, 2005,
pp. 8 pp.–.

[19] B. Awerbuch, R. Curtmola, D. Holmer, H. Rubens, and C. Nita-Rotaru,
“On the survivability of routing protocols in ad hoc wireless networks,”
in SECURECOMM’05, 2005, pp. 327–338.

[20] M. Khabbazian, H. Mercier, and V. K. Bhargava, “Severity analysis and
countermeasure for the wormhole attack in wireless ad hoc networks,”
IEEE Transactions on Wireless Communications, vol. 8, no. 2, pp. 736–
745, Feb 2009.

[21] “IEEE standard for low-rate wireless networks,” IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[22] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The Trickle
algorithm,” Internet Requests for Comments, RFC 6206, 2011.

[23] P. L. O. Gnawali, “The Minimum Rank with Hysteresis Objective
Function,” Internet Requests for Comments, RFC 6719, 2011.

[24] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” Wireless Net-
works, vol. 11, no. 4, pp. 419–434, Jul. 2005.

[25] N. Sastry and D. Wagner, “Security considerations for IEEE 802.15.4
networks,” in WiSe’04, 2004, pp. 32–42.

[26] C. Vallati, E. Ancillotti, R. Bruno, E. Mingozzi, and G. Anastasi, “Inter-
play of link quality estimation and RPL performance: An experimental
study,” in PE-WASUN’16. New York, NY, USA: ACM, 2016, pp. 83–
90.

[27] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless
networks,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 2, pp. 370–380, Feb 2006.

[28] I. Khalil, S. Bagchi, and N. B. Shroff, “LITEWORP: a lightweight
countermeasure for the wormhole attack in multihop wireless networks,”
in DSN’05, 2005, pp. 612–621.

[29] S. Choi, D. y. Kim, D. h. Lee, and J. i. Jung, “WAP: Wormhole attack
prevention algorithm in mobile ad hoc networks,” in SUTC’08. IEEE,
2008, pp. 343–348.

[30] I. Khalil, S. Bagchi, and N. B. Shroff, “MobiWorp: Mitigation of
the wormhole attack in mobile multihop wireless networks,” Ad Hoc
Networks, vol. 6, no. 3, pp. 344 – 362, 2008.

[31] S. Jain, T. Ta, and J. S. Baras, “Wormhole detection using channel
characteristics,” in ICC’12, 2012, pp. 6699–6704.

[32] K.-F. Krentz and G. Wunder, “6LoWPAN security: Avoiding hidden
wormholes using channel reciprocity,” in TrustED’14. ACM, 2014, pp.
13–22.

[33] R. Poovendran and L. Lazos, “A graph theoretic framework for pre-
venting the wormhole attack in wireless ad hoc networks,” Wireless
Networks, vol. 13, no. 1, pp. 27–59, Feb 2007.

[34] J. Eriksson, S. V. Krishnamurthy, and M. Faloutsos, “TrueLink: A
practical countermeasure to the wormhole attack in wireless networks,”
in ICMP’06. IEEE, 2006, pp. 75–84.

[35] P. Perazzo, L. Taponecco, A. A. D’Amico, and G. Dini, “Secure
positioning in wireless sensor networks through enlargement miscontrol
detection,” ACM Transactions on Sensor Networks, vol. 12, no. 4, pp.
27:1–27:32, Sep. 2016.


